close
Sayahna Sayahna
Search

Difference between revisions of "SFN:Math-test"


(Created page with "$ \newcommand\cc{\mathcal{C}} \newcommand\set{\mathsf{Set}} $ {{defn|name=Definition 1|note=Definition of set-based categories|label=df:sbcat |Let $\cc$ be a small category a...")
 
Line 8: Line 8:
 
say that $\cc$ is ''set-based'' (\sbcat\ for short) with respect
 
say that $\cc$ is ''set-based'' (\sbcat\ for short) with respect
 
to $U$ if the pair $(\cc,U)$ satisfy the following:
 
to $U$ if the pair $(\cc,U)$ satisfy the following:
 
+
<!--
 
(Sb:a) $U$ is an embedding.
 
(Sb:a) $U$ is an embedding.
  
Line 17: Line 17:
 
\[  
 
\[  
 
     d\subseteq c,\quad d\subseteq c'\quad\text{and}\quad x\in U(d).  
 
     d\subseteq c,\quad d\subseteq c'\quad\text{and}\quad x\in U(d).  
\]
+
\]-->
 
}}
 
}}
  

Revision as of 05:32, 29 March 2014

$ \newcommand\cc{\mathcal{C}} \newcommand\set{\mathsf{Set}}

$

Definition 1  (Definition of set-based categories)

Let $\cc$ be a small category and let $U:\cc\to\set$ be a functor. We

say that $\cc$ is set-based (\sbcat\ for short) with respect to $U$ if the pair $(\cc,U)$ satisfy the following:

Notice that the condition (Sb:b) implies that the functor $U$ preserves image--factorizations: