Difference between revisions of "SFN:Math-test"
Line 30: | Line 30: | ||
If (Sb:b) (or (Sb:b)$^{*}$) hold, then | If (Sb:b) (or (Sb:b)$^{*}$) hold, then | ||
− | \begin{equation} | + | \begin{equation}\label{eq:4} |
− | \label{eq:4} | ||
U\left(f^{\circ}\inc{\im f}{\cod f}\right)=U(f)^{\circ}\inc{\im | U\left(f^{\circ}\inc{\im f}{\cod f}\right)=U(f)^{\circ}\inc{\im | ||
U(f)}{\cod U(f)} | U(f)}{\cod U(f)} | ||
\end{equation} | \end{equation} | ||
for all $f\in\cc$. Moreover, we have | for all $f\in\cc$. Moreover, we have | ||
− | \begin{equation} | + | \begin{equation}\label{eq:5} |
− | \label{eq:5} | ||
U(f|c)=U(f)|U(c)\quad\text{and}\quad | U(f|c)=U(f)|U(c)\quad\text{and}\quad | ||
U\left(f(c)\right)=U(f)\left(U(c)\right) | U\left(f(c)\right)=U(f)\left(U(c)\right) |
Revision as of 05:52, 29 March 2014
$ \newcommand\cc{\mathcal{C}} \newcommand\set{\mathsf{Set}} \newcommand\sbcat{\mathit{Category}}
$
Definition 1 (Definition of set-based categories)
say that $\cc$ is set-based ($\sbcat$ for short) with respect to $U$ if the pair $(\cc,U)$ satisfy the following:
(Sb:a) $U$ is an embedding.
(Sb:b) $U(\im f)=\im U(f)$ for all $f\in\cc$.
(Sb:c) The functor $U$ has the following property: for $c,c'\in\vrt \cc$ and $x\in U(c)\cap U(c')$ there is $d\in\vrt\cc$ such that
\[ d\subseteq c,\quad d\subseteq c'\quad\text{and}\quad x\in U(d). \]Notice that the condition (Sb:b) implies that the functor $U$ preserves image--factorizations:
Lemma 1
(Sb:d) $U(f)^{\circ}=U(f^{\circ})$ for all $f\in\cc$.
If (Sb:b) (or (Sb:b)$^{*}$) hold, then \begin{equation}\label{eq:4} U\left(f^{\circ}\inc{\im f}{\cod f}\right)=U(f)^{\circ}\inc{\im U(f)}{\cod U(f)} \end{equation} for all $f\in\cc$. Moreover, we have \begin{equation}\label{eq:5}
U(f