close
Sayahna Sayahna
Search

Difference between revisions of "SFN:Math-test"


Line 2: Line 2:
 
\newcommand\cc{\mathcal{C}}
 
\newcommand\cc{\mathcal{C}}
 
\newcommand\set{\mathsf{Set}}
 
\newcommand\set{\mathsf{Set}}
\newcommand\sbcat{\ensuremath{\mathit{Category}}}
+
\newcommand\sbcat{\mathit{Category}}
  
 
$
 
$
Line 9: Line 9:
 
say that $\cc$ is ''set-based'' ($\sbcat$ for short) with respect
 
say that $\cc$ is ''set-based'' ($\sbcat$ for short) with respect
 
to $U$ if the pair $(\cc,U)$ satisfy the following:
 
to $U$ if the pair $(\cc,U)$ satisfy the following:
<!--
+
 
 
(Sb:a) $U$ is an embedding.
 
(Sb:a) $U$ is an embedding.
  
Line 16: Line 16:
 
(Sb:c) The functor $U$ has the following property: for $c,c'\in\vrt
 
(Sb:c) The functor $U$ has the following property: for $c,c'\in\vrt
 
\cc$ and $x\in U(c)\cap U(c')$ there is $d\in\vrt\cc$ such that
 
\cc$ and $x\in U(c)\cap U(c')$ there is $d\in\vrt\cc$ such that
 +
<!--
 
\[  
 
\[  
 
     d\subseteq c,\quad d\subseteq c'\quad\text{and}\quad x\in U(d).  
 
     d\subseteq c,\quad d\subseteq c'\quad\text{and}\quad x\in U(d).  

Revision as of 05:33, 29 March 2014

$ \newcommand\cc{\mathcal{C}} \newcommand\set{\mathsf{Set}} \newcommand\sbcat{\mathit{Category}}

$

Notice that the condition (Sb:b) implies that the functor $U$ preserves image--factorizations: